

Seaweed pathogens: What impact do they have on your crop?

Dr. Martina Strittmatter
Scottish Association for Marine Science

Seminar overview

INTRODUCTION: DEFINITIONS

EXAMPLES OF PATHOGENS FOUND IN SEAWEED AQUACULTURE

TOOL
DEVELOPMENT /
KNOWLEDGE
BASE

Our team

Dr. Claire Gachon

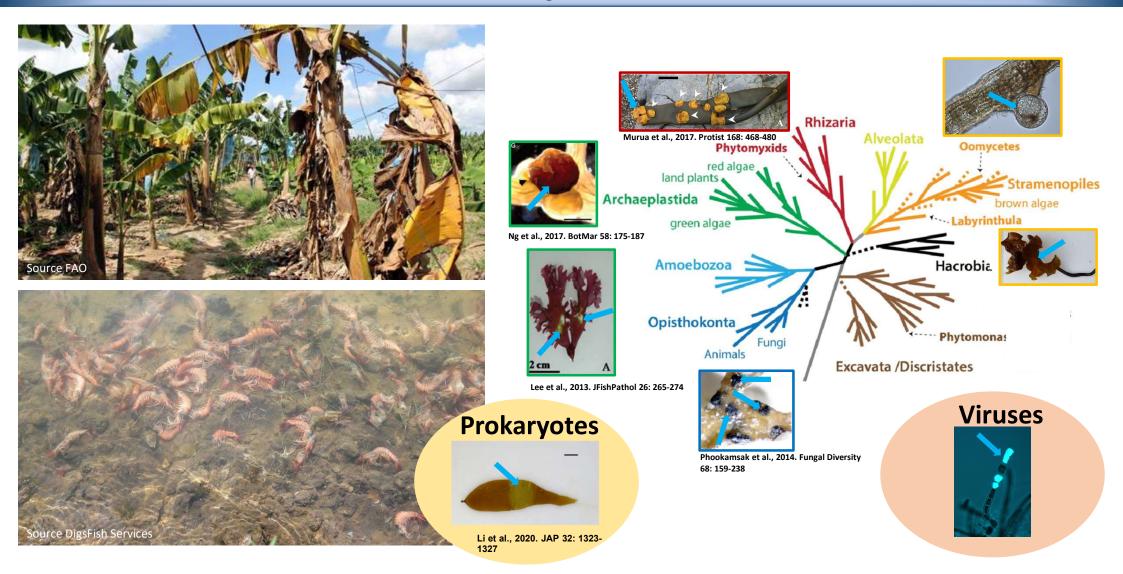
Dr. Marie-Mathilde Perrineau

Dr. Janina Brakel

Dr. Paola Arce

Cecilia Rad Menéndez

Carla Ruiz Gonzalez



QianYi Zhang

+ alumni and many more

Macroalgal Diseases

Macroalgal diseases: Significance

Ecological impacts

Economical impacts

J. Phycol. *, ****_*** (2021) © 2021 Phycological Society of America DOI: 10.1111/jpy.13180-20-278

MOLECULAR ANALYSIS OF A FUNGAL DISEASE IN THE HABITAT-FORMING BROWN MACROALGA PHYLLOSPORA COMOSA (FUCALES) ALONG A LATITUDINAL GRADIENT¹

Journal of Applied Phycology (2019) 31:1239-1250 https://doi.org/10.1007/s10811-018-1641-9

Marine Biology (2021) 168:47 https://doi.org/10.1007/s00227-021-03853-8

SHORT NOTES

Check for updates

Pathogen inferred to have dispersed thousands of kilometres at sea, infecting multiple keystone kelp species

Abigail L. Mabey^{1,2} · Elahe Parvizi³ · Ceridwen I. Fraser³

Novel species of the oomycete *Olpidiopsis* potentially threaten European red algal cultivation

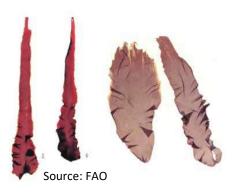
Yacine Badis ¹ · Tatyana A. Klochkova ² · Martina Strittmatter ^{1,3} · Andrea Garvetto ¹ · Pedro Murúa ^{1,4} · J. Craig Sanderson ⁵ · Gwang Hoon Kim ⁶ · Claire M. M. Gachon ¹

Review

Algae 2014, 29(4): 249-265 http://dx.doi.org/10.4490/algae.2014.29.4.249

Open Access

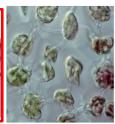
A revaluation of algal diseases in Korean *Pyropia* (*Porphyra*) sea farms and their economic impact


Porphyra industry in Asia: impacts of pathogens

important marine crop: annual market value 2 billion \$US (source FAO)

Commonly used in sushi ("nori")

mainly cultivated in Japan, China and Korea


Porphyra industry in Asia: impacts of pathogens

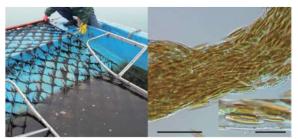
Several organisms currently challenge the cultivation of *Porphyra*

Pathogens:

Oomycetes: Olpidiopsis disease and red rot disease (Pythium porphyrae)

Red-rot diseasePythium porphyrae

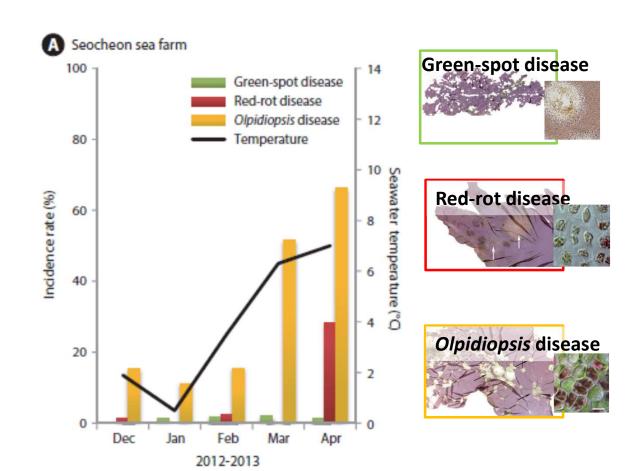
Olpidiopsis blight
Olpidiopsis porphyrae


Bacteria/viruses: green spot disease

Green-spot diseaseViral infection

Fouling organisms
Diatoms
cyanobacteria

Porphyra industry in Asia: impacts of pathogens


Some numbers....

Olpidiopsis disease in Seocheon Sea Farm in 2012/2013

- Early harvest (shorter growth period, lower harvest)
- Production loss estimated to 1.6 Mio US\$
 (25% of annual sale in this area)

Diatom felt in Seocheon Sea Farm in 2011-2013

- Production uneffected, but lower auction price due to changes in taste and visual aspect of blade
- Price drop by 2/3 of the normal price

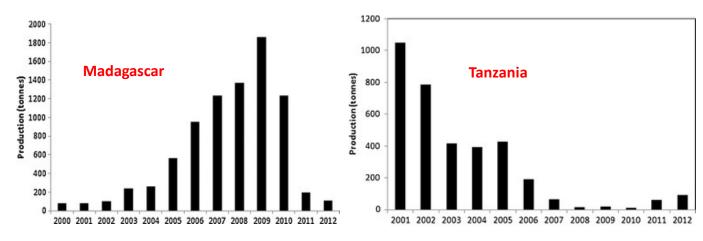
From Kim et al. 2014 doi.org/10.4490/algae.2014.29.4.249

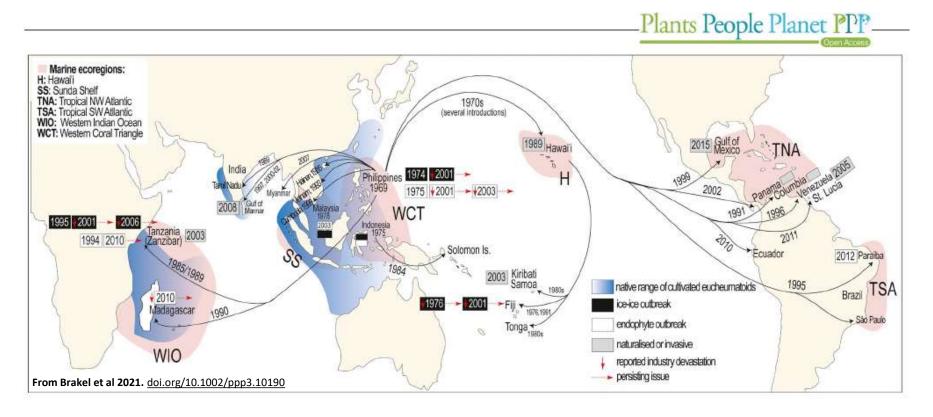
Carragenophyte farming and impact of pathogens

- > Mainly Eucheumatoid species: Kappaphycus sp., Eucheuma sp.
- Main producers: Indonesia, Philippines, Malaysia, China, Tanzania
- ➤ Biggest annual production of all seaweed crops: 11.1 Mio t (fresh weight), 1.6 bill US \$ (represents 41% of global annual production)

Carragenophyte farming and impact of pathogens

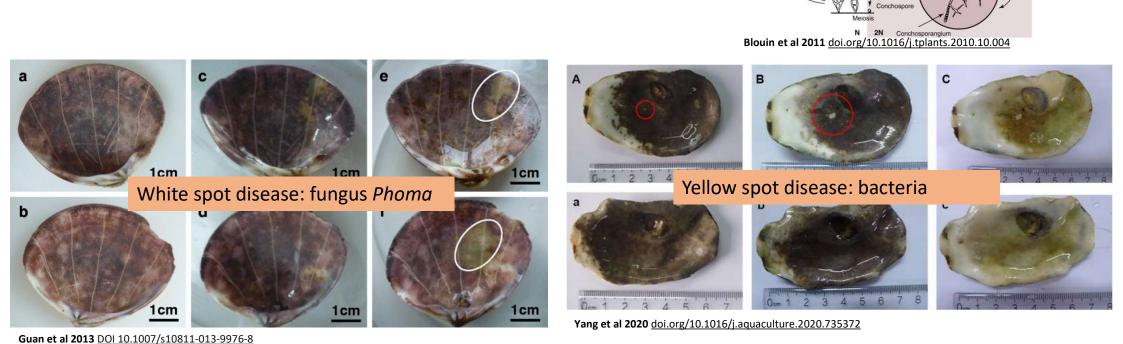
Two major diseases / pests occurring in eucheumatoid farming:


- > Ice-ice syndrome
- > Infestation by epiphytic filamentous algae


From Msuya et al 2014 doi.org/10.1007/s10811-013-0086-4

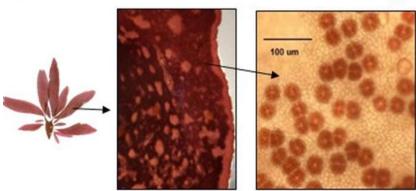
- ⇒ Major cause for production losses: e.g. Philippines yearly average production losses of 16.8% in 2012 to 2018
- ⇒ Varying annual production in Tanzania and Madagascar since begin of die-off

Global movement of seaweed germplasm for carragenophyte cultivation and occurrence of diseases



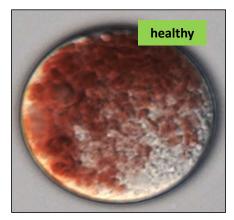
- > unintentional transfer of pathogens by contaminated seed stock suspected
- known in other aquaculture sectors (e.g. oysters, crustaceans)

Examples of pathogens in seaweed hatcheries (seeding facilities)

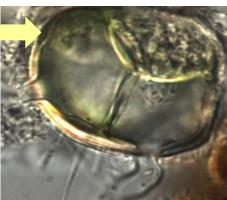

Porphyra: shell boring conchocelis stage cultivated in hatcheries Also prone to pathogen infection

Extent of pathogen-related damage not fully known

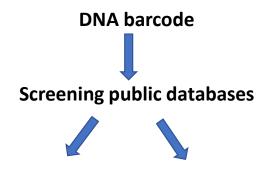
An example from European waters: Discovery of a new algal pathogen of dulse


Normal hatchery steps cultivating P. palmata

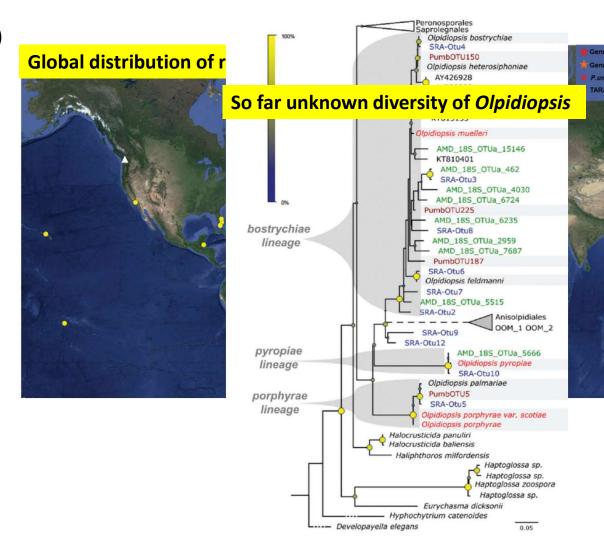
From Schmedes et al 2019. doi.org/10.1016/j.algal.2019.101494


- > Reported seeding failure
- > Observation of *O. palmariae* in cultivation facility in Scotland
- > New pathogen species *Olpidiopsis palmariae*

Effects on nascent Western aquaculture?


From Badis et al 2019 . doi.org/10.1007/s10811-018-1641-9

Underestimated diversity of algal pathogens: Example Olpidiopsis


Approach:

-> mapping

Data mining of public datasets (SRA etc)

Sequence retrieval **GPS** coordinates -> phylogeny

From Badis et al 2019 DOI: 10.1080/09670262.2019.1664769

Diseases and pathogens of macroalgae

- **❖** Rising concern about macroalgal diseases (cultivation)
- **❖** Potential risk of spreading of pathogens between wild and cultivated species (biosecurity)

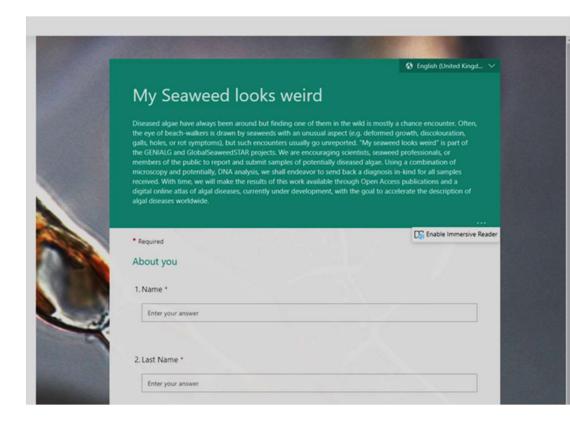
Currently

No baseline of pathogens in macroalgae including

- diversity
- biogeography
- host range
- ecology

 \rightarrow MSLW web portal

MSLW participative web portal

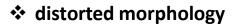


https://www.globalseaweed.org/?page_id=902

Email: mslw@sams.ac.uk

- **❖** Online portal
- Platform to report observations of wild and cultivated algal diseases
- **❖** Available in three languages (English, Spanish, Portuguese)
- Confidentiality, acknowledgements

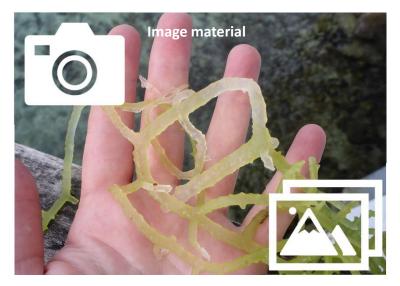
Possible indicators of pathogens and pests in seaweed

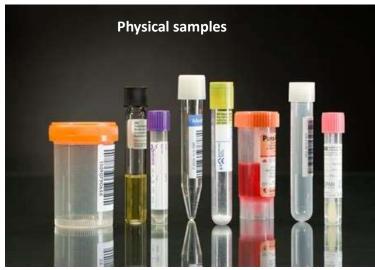

galls/blisters/warts

spots

Kim et al., 2014 Algae 29: 249-265

Arasamuthu et al., 2018 IndJGeMarSci

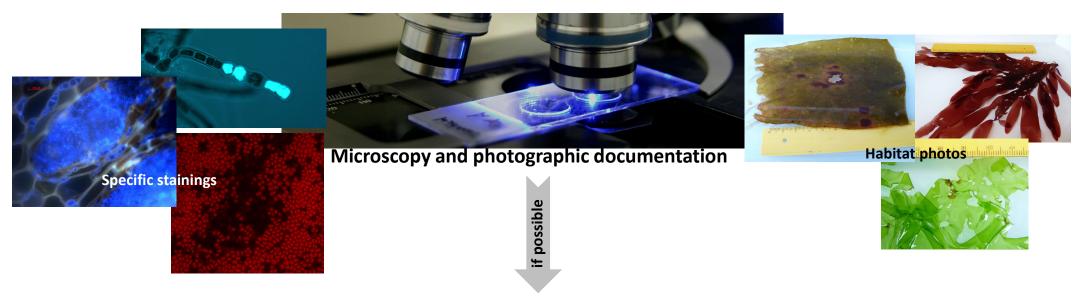

MSLW participative web portal



https://www.globalseaweed.org/?page_id=902

Email: mslw@sams.ac.uk

Submissions possible



Dr. Martina Strittmatter SAMS

MSLW sample processing

Isolation, cultivation, assays

Molecular barcoding

Offer in-kind diagnosis and report for submitted samples (when possible)

Objectives of the MSLW web portal

Encourage participation and invite sample submissions

Accelerate the description and identification of algal diseases worldwide

Badis et al, 2020. EJP 55:162-171

Increase knowledge on the diversity of algal pathogens

Make information available in an open-access repository
(Algal Disease Atlas, in progress)

Online Digital Algal Disease Atlas

Data source

Algal Disease Atlas:

- taxonomy of host and pathogens
- images
- interactions
- biogeography data
- ❖ literature
- protocols / manuals

Contact us

Objective:

Algal Disease Atlas V1 at the end of 2021

