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Outline

1. Why dry seaweed with wind power in the Northern Periphery and 
Arctic region?  
Food security and wind in the Northern Periphery and Arctic 
region.

2. What does a basic wind power drying system look like?
Wind power system for seaweed drying

3. What design considerations exist when selecting a system?
Case study

2



Food security and wind in the 
Northern Periphery and Arctic 
region
Why dry seaweed with wind power in the Northern Periphery and Arctic region?
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Seaweed for food security in the Arctic region

• The higher latitude limit to seaweed growth is c. 80° N (Lüning, 1990).

• High water clarity allows deep penetration of insolation for 2-3 
months per year (Gomez et al., 1997).
• Climate change induced early ice melting expands seaweed growing season 

(Barnes 2015).

• Alternative naturally occurring food sources are limited.

• Potential alternative locally farmed foods are limited.
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Mean wind speeds at 50 m ASL

(Global Wind Atlas 3.0)

Not to scale or relative position



Wind power system for seaweed 
drying
What does a basic wind power drying system look like?
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Wind power system for seaweed drying
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dryer

wet (MC ~ 0.9 w/w) seaweed in

dry (MC ~ 0.15 w/w) seaweed out

electrical energy



Main user inputs to model

Data inputs:

• Hourly windspeed for year;

• Hourly seaweed production for year;

Frontend variables:

• Wind turbine rated capacity and hub 
height;

• Battery capacity;

• Energy required to dry tonne of 
seaweed.
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Food drying model

• Actual energy requirements are slightly dependent 
on seaweed species and heavily dependent on 
process design.

• Typical values:
• Basic blown air dryer= 1400 MJ tonne-1(Suherman et al 

2018) to 2250 MJ tonne-1 (Aziz et al. 2013).

• Blown air dryer with energy recovery = 237 MJ tonne-1 

(Aziz et al. 2013).
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dryer

wet (x ~ 0.9) seaweed in

dry (x ~ 0.15) seaweed out



Model frontend
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Case study
What design considerations exist when selecting a system?
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• Wind data location: 
Stornoway, UK.

• Production: 0.3 
tonne/h, 12 h/day, all 
April and May.

• Drying method:
Basic blown air (2000 
MJ tonne-1)

• Turbine hub height: 
100 m
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Case study parameters
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Case study: turbine-battery-“waste” tradeoff
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Case study: turbine-battery- “waste” tradeoff
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Conclusions
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Conclusions

• Seaweed drying using wind as the primary energy source is very 
plausible in the NPA region due to:
• Good water characteristics;

• Excellent mean windspeeds.

• Order-of-magnitude reduction in power requirement if energy 
capture drying processes are introduced.

• For an off-grid system, tradeoffs exist between turbine size, battery 
capacity, and acceptable level of “waste”.
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Future additions to the model

• Alternative primary energy sources (e.g. solar, wave, hydro)

• Alternative energy storage (e.g. hydrogen)

• Alternative drying processes (e.g. energy recovery)

• Uses for “waste” seaweed (e.g. fertiliser, biofuel).

• Effects of on-grid installation

• Alternative uses of drying facility when seaweed is not harvested (e.g. salt 
production)

• Installation and lifecycle economic analysis

• Transient seaweed drying
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