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The effect of natural convection air temperature on the drying kinetics and 
desorption isotherms of Alaria esculenta and Palmaria palmata
Roy S. Bartle and Alasdair Macleod

Department of Engineering, Lews Castle College, University of the Highlands and Islands, Isle of Lewis, UK

ABSTRACT
The Northern Periphery and Arctic region faces unique economic and food security challenges that 
may be partly answered by commercial seaweed production. Alaria esculenta and Palmaria 
palmata are two seaweeds commonly found in the region and suitable for cultivation and 
processing for food and other commercial products. The drying kinetics for both species were 
obtained, and the Page and Weibull models best described the data. A drying air temperature 
increase from 40 to 70°C decreased drying time by 62.4% and 61.7% for A. esculenta and P. palmata, 
respectively. Desorption isotherms were obtained between 25 and 70°C and showed Brunauer 
Category III shapes, with water activity increasing with temperature for a fixed moisture 
content. Net heats of desorption were obtained, with drying to an equilibrium moisture content 
of 0.01 kgwater kgd.b.–1 requiring 18.1 and 3.94 kJ mol–1 K–1 for A. esculenta and P. palmata, 
respectively.
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Introduction

The Northern Periphery and Arctic (NPA) region, 
although geographically diverse, shares several chal
lenges including low accessibility, low economic diver
sity and high potential impact of climate change 
(Northern Periphery and Arctic Programme, 2016). 
Population growth and climate change have the poten
tial to exacerbate these issues and raise food security 
concerns. Additionally, growing awareness of the car
bon footprint of foods raises calls for food produced 
locally, efficiently and sustainably. The NPA 
Programme aims to overcome such challenges by trans
national project cooperation involving nine partner 
countries in the region.

Seaweed production may form part of the solution to 
these challenges. Seaweed cultivation has no land area 
demand, and a processing facility needs only a small 
land footprint; there is thus no competition with agri
culture for viable grazing or arable land, which is scarce 
in many parts of the NPA region (Jacobson, 2016; 
Kintisch, 2016). Seaweed cultivation and processing 
offers an alternative or complementary livelihood to 
fishing using many of the same skills and not requiring 
major retraining.

SW-GROW is a multidisciplinary project funded by the 
NPA that aims to innovate and communicate research and 
best practice to bolster the seaweed industry in the region. 
The SW-GROW programme identified two seaweed 

species as of special interest for food cultivation: Alaria 
esculenta and Palmaria palmata. A. esculenta (winged kelp, 
dabberlocks or lair) is a brown seaweed found at low tide 
and in the sublittoral zone across the NPA region 
(Springer, Lütz, Lütz-Meindl, Wendt, & Bischof, 2017). 
Its regional limits are determined by the 16°C summer 
water temperature isotherm (Lüning, 1990); with warming 
seawater, its southern range is expected to contract 
(Mieszkowska et al., 2006); however, its abundance across 
the British Isles has not changed significantly between 1974 
and 2010 (Yesson, Bush, Davies, Maggs, & Brodie, 2015). It 
is relatively tolerant of salinity variation (Fredersdorf, 
Müller, Becker, Wiencke, & Bischof, 2009). It has been 
used as a food for humans (Chapman, Stévant, & Larssen, 
2015) and land (Seterlund, Hoie, Sannan, & Raastad, 1968) 
and sea (Mai, Mercer, & Donlon, 1994) dwelling herbi
vores, and contains viable quantities of sugars, proteins 
and minerals (Schiener, Black, Stanley, & Green, 2015). It 
can also be used for nutrient sequestration in aquaculture 
(Reid et al., 2013) and in the production of biocoal and 
biomethane by hydrothermal carbonization (Smith & 
Ross, 2016). To date various seeded rope methods have 
been investigated for commercial cultivation of 
A. esculenta (Kerrison et al., 2020).

P. palmata (dulse, dillisk, söl) is a red seaweed found 
in the littoral and sublittoral zones across the NPA 
region (Werner & Dring, 2011); growth rate deteriora
tion begins between 14°C and 18°C summer 
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temperature (Morgan & Simpson, 1981), and salinity. It 
is amongst the most commonly used seaweeds for 
human consumption – in the UK and Ireland, 
Norway, the Faroes, Iceland and New England – due 
partly to its attractive taste profile, and is relatively high 
in amino acid and lipid content (Mouritsen et al., 2013). 
Additionally, the long-chain lipids in P. palmata are 
more readily digestible to humans than those found in 
other seaweeds (Lopes et al., 2019; van Ginneken, 
Helsper, de Visser, van Keulen, & Brandenburg, 2011) 
and can be further enhanced by heat treatment (Maehre, 
Edvinsen, Eilertsen, & Elvevoll, 2016). Alongside food 
use, P. palmata supplements have may have health 
benefits including hypertriglyceridaemia reduction 
(Takase et al., 2020) and hypertension and Type II 
diabetes control (Harnedy & FitzGerald, 2013).

Both seaweed species can be eaten fresh, but, because 
fresh seaweed is highly perishable, dehydration is normally 
required for commercial distribution and in order to pre
serve the seaweed for future consumption. Drying is an 
energy-intensive step in seaweed processing, and the objec
tives are to maximise nutritional characteristics whilst 
preventing microbial growth, at the minimum energy 
cost. Microbial growth is promoted with increasing water 
activity but cannot occur where aw < 0.6 (Fontana, 2020). 
Al-Muhtaseb, McMinn, and Magee (2002) provide 
a succinct review of water activity isotherm modelling. 
Historically, open air drying was common but convective 
air drying methods are common today; principally because 
they are relatively simple to design and effectively preserve 
nutrients in the dried seaweed (Badmus, Taggart, & Boyd, 
2019; Uribe et al., 2019). Erbay and Icier (2010) and 
Onwude et al. (2016) present thorough reviews and classi
fication of convective drying models. This paper provides 
the drying kinetics, desorption isotherms and isosteric 
desorption heats of A. esculenta and P. palmata. 
Additionally, it enables seaweed producers to design and 
calibrate convection drying systems in which convection is 
either natural or the air velocity is low. We expect to report 
the effects of air velocity, temperature and humidity in 
forced convective drying systems in a future paper.

Materials and methods

Sample preparation

Both seaweed species were wild harvested: A. esculenta 
from the coastline stretching from 58°15ʹ02”N 6°08ʹ23”W 
to 58°14ʹ02”N 6°09ʹ23”W, on the Eye Peninsula, Isle of 
Lewis, UK; and P. palmata from 57°49ʹ07”N 6°49ʹ52”W 
to 57°49ʹ03”N 6°49ʹ48”W at Stockinish, Isle of Harris, UK. 
Both species were harvested between April and July 2020 to 
obtain kinetics for the typical harvesting season. Fig 2 

shows the seaweeds after harvesting and before sample 
preparation. Harvested seaweed was immediately placed 
in a sealed container filled with seawater and then refriger
ated at 3 ± 1°C within 1 h of harvesting. Scoping experi
ments showed that A. esculenta deteriorated more rapidly 
than P. palmata and began to discolour and develop 
a sharp smell after ~80 h of refrigeration; therefore, any 
leftover seaweed was discarded after 72 h to ensure sample 
consistency.

When ready for use, samples of 2.5 ± 0.2 g by wet basis 
(w.b.) were prepared. Whilst P. palmata is a homogenous 
material, A. esculenta consists of a thick, dense stripe and 
a thin blade; therefore, care was taken to ensure that the 
planar stripe-to-blade ratio of each A. esculenta sample 
was approximately constant. The samples were rinsed in 
fresh water and then shaken for 5 s to remove surface 
water droplets. All drying and desorption tests were per
formed in triplicate and the mean taken of the results.

Drying

Drying was performed with a Kern DAB 100-3 moisture 
analyser that removed moisture from the samples by 
natural convection heating at a specified temperature. 
This was connected by RS-232 lead to a PC for auto
mated data recording, as shown in Fig 1. The time-based 
drying curves were obtained with a temporal sampling 
resolution of 1 min and a mass accuracy of ± 0.5 mg. 
Each sample was considered dry (MR = 0) when the 
sample mass decreased by less than 10–5 g min–1 for five 
consecutive minutes.

The experimental moisture ratio is calculated as 

MR ¼
X � Xe

X0 � Xe
: (1) 

Kern DAB 100-3 
natural 

convective dryer
PCRS232

WP40-TH 
sample holder

HC2-AW
probe

HP23-AW-A
handheld reader

Lauda Alpha A6
thermal bath

Figure 1. Block diagram to show the setup for the drying and 
desorption experiments.
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This was compared with the empirical models shown in 
Table 1. Lewis (1921) model is often referred to in the 
literature as Newton’s as it derives from Newton’s law of 
cooling. Page (1949) added the empirical constant n, which 
was modified by Overhults, White, Hamilton, and Ross 
(1973).

The coefficient of determination is defined as 

r2 ¼ 1 �
SSres

SST
; (2) 

where sum-of-squares subscripts res and T denote resi
duals and total, respectively.

For each model in Table 1, the fitting constants were 
obtained by nonlinear regression using the Trust- 
Region Method in MATLAB.

Desorption

Water activity was measured with Rotronic water activity 
metering equipment: samples were placed inside a WP- 
40TH water-jacketed sample holder, on which sat an HC2- 
AW capacitive measurement probe connected to the 
HP23-AW-A handheld reader, returning aw accurate to ± 
0.01. The water-jacketed sample holder was fed by a ther
mostatically controlled Lauda Alpha A6 thermal bath.

To obtain the desorption isotherms, the samples were 
dried with the moisture analyser until the mass (± 
0.025 g) for each data point was obtained, then trans
ferred to the water activity meter, regulated to the 
desired temperature, and the water activity was read 
once stable for 5 min. Data points were obtained at 
relative humidities of [0.75, 0.5, 0.4, 0.3, 0.275, 0.25, 
0.225 and 0.2] of the initial wet mass.

A comparison of the sorption models shown in Table 2 
was made. The Guggenheim–Anderson– de Boer (GAB) 
model (Equation (11)) was derived independently by 
Anderson (1946), de Boer (1953), and Guggenheim 
(1966). It is a development of the Langmuir (1918) and 
Brunauer, Emmett, and Teller (1938) (BET) models and 
uses fitting parameters with physical meaning: 

Figure 2. Photographs with a 30 cm ruler of (a) Alaria esculenta and (b) Palmaria palmata, as harvested before trimming to sample 
weight.

Table 1. Drying models.
Model Expression Reference

Lewis– 
Newton

MR ¼ expð� ktÞ (7) Lewis (1921)

Page MR ¼ expð� ktnÞ (8) Page (1949)
Modified Page I MR ¼ exp ð� ktÞn (9) Overhults et al. (1973)
Weibull MR ¼ exp � t

α

� �β
h i

(10) Weibull (1951)

Table 2. Desorption models.
Model Expression Reference

Guggenheim–Anderson–de Boer (GAB) Xe ¼
X0 kCaw

1� kawð Þ 1� kawþkCawð Þ
(11) Anderson (1946), de Boer (1953), Guggenheim (1966)

Oswin
Xe ¼ A aw

1� aw

� �B 
(12)

Oswin (1946)

Halsey
Xe ¼

� A
ln awð Þ

� �B 
(13)

Halsey (1948)

Caurie Xe ¼ exp aw lnðAÞ � 1
4:5Xs

� �
(14) Caurie (1970)
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C ¼ c0 exp
Hm � Hn

RT

� �

; (3) 

k ¼ k0 exp
Hl � Hn

RT

� �

; (4) 

where c0 and k0 are entropic fitting parameters and 
subscripts m, n, and 1 denote monolayer, multilayer 
and liquid, respectively. This was compared with the 
empirical models of Oswin (1946), Halsey (1948) and 
Caurie (1970). When evaluating these models, data 
points where aw > 0.95 were excluded as the models 
are not established for water activity values 
approaching unity.

The isosteric heat of sorption is: 

Qst ¼ qst þHfg ; (5) 

where Hfg is the latent heat of vaporization of water 
at the sample temperature. The net isosteric heat of 
sorption is given by the Clausius–Clapeyron 
equation: 

qst ¼ � R
@ ln aw

@1=T

�
�
�
�
�

Xe

; (6) 

evaluated at fixed moisture content.

Results

Drying kinetics

Fig 3 shows the logarithmic drying curves for the 
seaweed species studied. For both species, the layer 
half-thickness was 0.75 mm. Across all drying tem
peratures, A. esculenta took longer to dry than 
P. palmata and the temperature effect was of the 
same order of magnitude: increasing air temperature 
from 40 to 70°C decreased total drying time by 
62.4% and 61.7% for A. esculenta and P. palmata, 
respectively. Tables 3 and 4 show the drying model 
parameters for A. esculenta and P. palmata, respec
tively. All the curves are acceptably modelled by 
exponential functions; of the semi-empirical models, 
Page returned the highest mean r2 value. The 
Weibull model also returned excellent r2 values for 
both seaweeds. The β parameter was consistently 
lower for A. esculenta than P. palmata, indicating 
a drying curve that has a steeper initial profile but 
also levels off sooner (Bantle, Kolsaker, & Eikevik, 
2011).

Desorption isotherms

Figs 4 and 5 provide the desorption isotherms for 
A. esculenta and P. palmata, respectively; water activity 
was plotted on the x-axis according to convention, 
although it is the dependent variable in these tests. The 
“dry” datapoints corresponding to Xe = 0 kgwater kg–1 d.b. 

Table 3. Drying model parameters of A. esculenta.
Model T (°C) r2 α β

Weibull 40 .997 46.1 .863
50 .998 33.2 .888
60 .996 18.8 .855
70 .991 12.2 .843

Model T (°C) r2 k × 10−4 n

Lewis–Newton 40 .989 3.47 -
50 .993 4.87 -
60 .988 8.51 -
70 .984 13.2 -

Page 40 .998 10.8 .863
50 .998 11.8 .888
60 .996 24.7 .855
70 .992 38.6 .843

Modified Page 40 .989 6.40 .542
50 .993 10.3 .471
60 .988 11.3 .751
70 .984 18.9 .700

100 101 102

t (min)

0

0.2

0.4

0.6

0.8

1

M
R

40 °C
50 °C
60 °C
70 °C

100 101 102

t (min)

0

0.2

0.4

0.6

0.8

1

M
R

40 °C
50 °C
60 °C
70 °C

(a) (b) 

Figure 3. Effect of air temperature on drying curves of (a) Alaria esculenta and (b) Palmaria palmata.
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Table 4. Drying model parameters of Palmaria palmata.
Model T (°C) r2 α β

Weibull 40 .999 24.1 1.06
50 .999 20.2 1.03
60 .997 13.8 .973
70 1 7.76 1.16

Model T (°C) r2 k × 10−4 n

Lewis-Newton 40 .998 7.02 -
50 .999 8.32 -
60 .997 12.0 -
70 .995 22.1 -

Page 40 .999 4.42 1.06
50 .999 6.70 1.03
60 .995 7.50 1.07
70 1.00 8.09 1.16

Modified Page 40 .998 12.6 .559
50 .999 16.6 .501
60 .997 17.4 .687

Table 5. Desorption model parameters of Alaria esculenta.
Model T (°C) r2 Fitted constants

GAB 
(X0 in units kgwater kgd.b.

−1)
25 .909 X0 = 3.54 

kb = .946, C = 0.01316
40 .978 X0 = 3.55 

kb = .963, C = 0,004594
50 .897 X0 = 1.62 

kb = .865, C = 0.0071
60 .962 X0 = 1.02 

kb = 1, C = .00458
70 .790 X0 = 2.19 

kb = 1, C = 0.00268
Oswin 25 .911 A = 0.0698, B = 1.51

40 .975 A = 0.0275, B = 1.52
50 .884 A = 0.0165, B = 1.11
60 .976 A = 4.73 × 10−3, B = 2.14
70 .862 A = 3.23 × 10−3, B = 2.55

Halsey 25 .904 A = 0.161, B = 1.78
40 .971 A = 0.0900, B = 1.67
50 .877 A = 0.0261, B = 1.20
60 .977 A = 0.0794, B = 2.39
70 .859 A = 0.103, B = 2.85

Caurie 25 .923 A = 2188, Xs = 0.0343
40 .995 A = 5.68 × 104, Xs = 0.0220
50 .931 A = 4457, Xs = 0.0240
60 .965 A = 7.93 × 105, Xs = 0.0167
70 .868 A = 2.97 × 106, Xs = 0.0158
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Figure 4. Desorption isotherms of Alaria esculenta showing (a) full isotherms in log scale and (b) detail at low moisture content.
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Table 6. Desorption model parameters of Palmaria palmata.
Model T (°C) r2 Fitted constants

GAB 
(X0 in units kgwater kgd.b.

−1)
25 .996 X0 = .458 

kb = .988, C = 0.0165
40 .990 X0 = .116 

kb = .992, C = 0.0252
50 .989 X0= .171 

kb = .935, C = 0.0431
60 .946 Xo = 0.0127 

kb = 1, C = 0.281
70 .963 X0 = .00990 

kb = 1, C = 00932
Oswin 25 .995 A = 0.0138, B = 1.61

40 .993 A = 4.04 × 10−3, B = 1.76
50 .984 A = 0.0135, B = 1.24
60 .942 A = 6.31 × 10−3, B = 1.21
70 .967 A = 2.04 × 10−3, B = 1.41

Halsey 25 .994 A = 0.0678, B = 1.72
40 .991 A = 0.0447, B = 1.91
50 .980 A = 0.0328, B = 1.35
60 .937 A = 0.0166, B = 1.30
70 .968 A = 0.0130, B = 1.48

Caurie 25 .996 A = 3.14 × 106, Xs = 0.0158
40 .997 A = 1.14 × 106, Xs = 0.0156
50 .994 A = 1.29 × 104, Xs = 0.0219
60 .975 A = 2.99 × 104, Xs = 0.0191
70 .929 A = 1.66 × 106, Xs = 0.0141
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Figure 5. Desorption isotherms of Palmaria palmata showing (a) full isotherms in log scale and (b) detail at low moisture content.
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Figure 6. Net isosteric heat of desorption for (a) Alaria esculenta and (b) Palmaria palmata.
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were not plotted; the water activities jumped notably from 
their previous point (as graphed) to aw < 0.5 when moist
ure content moved from the previous non-zero Xe to zero. 
From Figs 4(b) and 5(b), both species exhibit Category III 
isotherms according to the Brunauer classification 
(Brunauer, Deming, Deming, & Teller, 1940). Across the 
moisture contents tested, increasing temperature increased 
the measured water activity. Tables 5 and 6 show that all 
four sorption models evaluated fitted the data well, 
although the Oswin and Halsey models performed mar
ginally poorer than the Caurie model. Previous seaweed 
desorption studies have not observed a significant perfor
mance variation between models tested (Arufe, Torres, 
Chenlo, & Moreira, 2018; Moreira, Chenlo, Sineiro, 
Sánchez, & Arufe, 2016).

To obtain the isosteric heat of sorption, the Caurie 
model was used to calculate water activity for a given 
moisture content, and then substituted into Equation 
(6) to return the results shown in Fig 6 for 
A. esculenta and P. palmata, respectively. This 
shows that drying to an equilibrium moisture con
tent of 0.01 kgwater kgd.b.–1, A. esculenta requires 
4.59× the energy of P. palmata.

Nomenclature

A Sorption fitting constant
aw Water activity
B Sorption fitting constant
C GAB fitting constant
H Molar sorption enthalpy
H{fg} Latent heat of vaporization
k Constant
MR Moisture ratio
n Empirical constant
Qst Isosteric heat of sorption
qst Net isosteric heat of sorption
R Gas constant = 8.314
r2 Correlation coefficient
SS Sum-of-squares
T Temperature
t Time
X Instantaneous moisture content
X0 Monolayer moisture content
Xe Equilibrium moisture content
Xs Security moisture content
α Weibull coefficient
β Weibull coefficient
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